Skip to contents

[Superseded]

episensr 2.0.0 introduced breaking changes in probabilistic bias analyses by (1) using the NORTA transformation to define a correlation between distributions, and (2) sampling true prevalences and then sampling the adjusted cell counts rather than just using the expected cell counts from a simple quantitative bias analysis. This updated version should be preferred and this legacy version will be deprecated in future versions. However, if you need to quickly roll back to the previous calculations, this function provides the previous interface. To make old code work as is, add the following code to the top of your script:

library(episensr)
probsens <- probsens_legacy

Usage

probsens_legacy(
  case,
  exposed,
  type = c("exposure", "outcome"),
  reps = 1000,
  seca.parms = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
    "logit-logistic", "logit-normal", "beta"), parms = NULL),
  seexp.parms = NULL,
  spca.parms = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
    "logit-logistic", "logit-normal", "beta"), parms = NULL),
  spexp.parms = NULL,
  corr.se = NULL,
  corr.sp = NULL,
  discard = TRUE,
  alpha = 0.05
)

Arguments

case

Outcome variable. If a variable, this variable is tabulated against.

exposed

Exposure variable.

type

Choice of correction for exposure or outcome misclassification.

reps

Number of replications to run.

seca.parms

List defining:

  1. The sensitivity of exposure classification among those with the outcome (when type = "exposure"), or

  2. The sensitivity of outcome classification among those with the exposure (when type = "outcome").

The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, logit-logistic, logit-normal, or beta) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired.

  1. constant: constant value,

  2. uniform: min, max,

  3. triangular: lower limit, upper limit, mode,

  4. trapezoidal: min, lower mode, upper mode, max,

  5. logit-logistic: location, scale, lower bound shift, upper bound shift,

  6. logit-normal: location, scale, lower bound shift, upper bound shift.

  7. beta: alpha, beta.

seexp.parms

List defining:

  1. The sensitivity of exposure classification among those without the outcome (when type = "exposure"), or

  2. The sensitivity of outcome classification among those without the exposure (when type = "outcome").

spca.parms

List as above for seca.parms but for specificity.

spexp.parms

List as above for seexp.parms but for specificity.

corr.se

Correlation between case and non-case sensitivities.

corr.sp

Correlation between case and non-case specificities.

discard

A logical scalar. In case of negative adjusted count, should the draws be discarded? If set to FALSE, negative counts are set to zero.

alpha

Significance level.

Value

A list with elements:

obs.data

The analyzed 2 x 2 table from the observed data.

obs.measures

A table of observed relative risk and odds ratio with confidence intervals.

adj.measures

A table of corrected relative risks and odds ratios.

sim.df

Data frame of random parameters and computed values.

reps

Number of replications.

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.117–150, Springer.

Examples

# The data for this example come from:
# Greenland S., Salvan A., Wegman D.H., Hallock M.F., Smith T.J.
# A case-control study of cancer mortality at a transformer-assembly facility.
# Int Arch Occup Environ Health 1994; 66(1):49-54.
if (FALSE) { # \dontrun{
set.seed(123)
# Exposure misclassification, non-differential
probsens_legacy(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 20000,
seca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
spca.parms = list("trapezoidal", c(.75, .85, .95, 1)))

# Exposure misclassification, differential
probsens_legacy(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 20000,
seca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
seexp.parms = list("trapezoidal", c(.7, .8, .9, .95)),
spca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
spexp.parms = list("trapezoidal", c(.7, .8, .9, .95)),
corr.se = .8,
corr.sp = .8)

probsens_legacy(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 20000,
seca.parms = list("beta", c(908, 16)),
seexp.parms = list("beta", c(156, 56)),
spca.parms = list("beta", c(153, 6)),
spexp.parms = list("beta", c(205, 18)),
corr.se = .8,
corr.sp = .8)

probsens_legacy(matrix(c(338, 490, 17984, 32024),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 1000,
seca.parms = list("trapezoidal", c(.8, .9, .9, 1)),
spca.parms = list("trapezoidal", c(.8, .9, .9, 1)))

# Disease misclassification
probsens_legacy(matrix(c(173, 602, 134, 663),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "outcome",
reps = 20000,
seca.parms = list("uniform", c(.8, 1)),
spca.parms = list("uniform", c(.8, 1)))

probsens_legacy(matrix(c(338, 490, 17984, 32024),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "outcome",
reps = 20000,
seca.parms = list("uniform", c(.2, .6)),
seexp.parms = list("uniform", c(.1, .5)),
spca.parms = list("uniform", c(.99, 1)),
spexp.parms = list("uniform", c(.99, 1)),
corr.se = .8,
corr.sp = .8)

probsens_legacy(matrix(c(173, 602, 134, 663),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "outcome",
reps = 20000,
seca.parms = list("beta", c(100, 5)),
seexp.parms = list("beta", c(110, 10)),
spca.parms = list("beta", c(120, 15)),
spexp.parms = list("beta", c(130, 30)),
corr.se = .8,
corr.sp = .8)
} # }