episensr also uses the pipe function, %>%
to turn
function composition into a series of imperative statements.
Examples
# Instead of
misclass(matrix(c(118, 832, 103, 884),
dimnames = list(c("BC+", "BC-"), c("AD+", "AD-")), nrow = 2, byrow = TRUE),
type = "exposure", bias_parms = c(.56, .58, .99, .97))
#>
#> ── Observed data ───────────────────────────────────────────────────────────────
#> • Outcome: BC+
#> • Comparing: AD+ vs. AD-
#>
#> AD+ AD-
#> BC+ 118 832
#> BC- 103 884
#> 2.5% 97.5%
#> Observed Relative Risk: 1.1012443 0.9646019 1.2572431
#> Observed Odds Ratio: 1.2172330 0.9192874 1.6117443
#> ── Bias-adjusted measures ──
#>
#> 2.5% 97.5%
#> Misclassification Bias Corrected Relative Risk: 1.272939
#> Misclassification Bias Corrected Odds Ratio: 1.676452 1.150577 2.442679
# you can write
dat <- matrix(c(118, 832, 103, 884),
dimnames = list(c("BC+", "BC-"), c("AD+", "AD-")), nrow = 2, byrow = TRUE)
dat %>% misclass(., type = "exposure", bias_parms = c(.56, .58, .99, .97))
#> ── Observed data ───────────────────────────────────────────────────────────────
#> • Outcome: BC+
#> • Comparing: AD+ vs. AD-
#>
#> AD+ AD-
#> BC+ 118 832
#> BC- 103 884
#> 2.5% 97.5%
#> Observed Relative Risk: 1.1012443 0.9646019 1.2572431
#> Observed Odds Ratio: 1.2172330 0.9192874 1.6117443
#> ── Bias-adjusted measures ──
#>
#> 2.5% 97.5%
#> Misclassification Bias Corrected Relative Risk: 1.272939
#> Misclassification Bias Corrected Odds Ratio: 1.676452 1.150577 2.442679